
GPFS Overview
February 15, 2002

Bill Loewe
wel@llnl.gov

(925) 422-5587

This work was performed under the auspices of the
U.S. Department of Energy

by the University of California,
Lawrence Livermore National Laboratory

under contract No. W-7405-Eng-48.

Topics
PART I:
• General GPFS Architecture and Functionality

– Highlights
– GPFS Model
– VSD Configuration
– Structure
– Data Flow

PART II:
• GPFS on Linux
• Operation/Security
• Comparison against other file systems
• Sysadm view
• Performance

GPFS Highlights
• scalable – allows incremental improvements by adding

hardware
• global access – uniform access to file system from every

node
• distributed locking – allows for parallelism and

consistency
• portable – provides POSIX interface to file system
• reliable – offers recovery mechanisms, including

high availability – file system will remain accessible to nodes even
when a node in the file system dies
fault tolerance – file data will not be lost even if some disk in the
file system fails

GPFS Model

Switch

Application
Node

disks

Application
Node

Application
Node

VSD
Server

disks

VSD
Server

disks

VSD
Server

disks

VSD
Server

Application
Node

Hardware
(as configured on white)

A p p l i c a t i o n N o d e s

SSA
Loop

5 Disks on each
RAID set (4 + P)

Switch

4+P

VSD Server

RIO

SSA

VSD Server(16)

(6)

(4)

(3)

• application node – node running user app that
accesses mounted GPFS

• VSD server node – Virtual Shared Disk node (or
I/O node) with disks attached

• RIO – Remote I/O that allows for a connection
between the server node and the disks

• SSA loop – Serial Storage Architecture disks may
be connected in a loop between nodes, allowing for
failover:

(This is in contrast to a twin-tailed approach which
is used for SCSI [Small Computer System
Interface]disks to connect two nodes to a single
disk.) 2 Hot Spares

Simple Configuration
Application

GPFS

VSD

Switch

CSS

VSD

LVM

DD

disks

More detailed Configuration
APPLICATIONS

VFS Layer

JFS GPFS

RVSD

VSD PSSP

IPLVM

Local
Disk

Switch for Data Traffic

General GPFS Structure
• GPFS resides on each node as a multi-threaded daemon (called mmfsd)

and a kernel extension.
• The daemon provides data and metadata management, such as disk

space allocation, data access, I/O operations, security, and quota
managements.

• The kernel extensions are needed to implement the Virtual File System
(VFS) layer to present GPFS as a local file system to an application.

• To access to the data disks comprising the file system, each node uses
VSD/RVSD (Virtual Shared Disk and Recoverable Virtual Shared
Disk).

• VSD enables nodes to share disks (a logical volume that can be
accessed by any node in the system partition.) VSD is comprised of a
server/client relationship.

The mmfsd daemon performs all of the I/O and
buffer management, including:

• allocation of disk space
• metadata management
• initiation of disk I/O
• implementation of security and quotas
• read-ahead (prefetch) caching – analyzes read pattern and reads more

data
• write-behind caching – buffers data until collects efficient write size
• token management – allocation of locks for data and metadata

management

The daemon implements these global management functions through
several managers.

GPFS Structure

GPFS daemon (mmfsd)

Configuration Manager

Stripe Group Manager

Token Manager

Metadata Manager

• mmfsd daemon
• Global Mgt. Functions

– Configuration Manager
– Stripe Group Manager
– Token Manager Server
– Metadata Manager

Global Management Functions
These main management functions may be performed by a

single node on behalf of all the other nodes, however it is
possible to have these tasks performed by different
daemons on different nodes.

Configuration Manager: (single daemon in the pool of
nodes performs this role)

• can determine quorum (minimum number of nodes in
nodeset to start)

• provides fencing of a failed node if necessary for continued
operation

• if Configuration Manager crashes, another node will run an
instance (it’s recoverable)

Global Management Functions
Stripe Group Manager: (single daemon in the pool performs

this per file system) (also called the File System Manager)
• a ‘Stripe Group’ is a collection of disks that make up

physical storage
• file system configuration – adding disks, file system repair,

etc.
• disk space allocation management – handles data blocks

and inode mapping, and controls which disk regions are
allocated to each node (allowing for effective
parallelization)

• token management – sends token requests to Token
Manager Server

• mounting/unmounting of file system
• quota management
• security services

Global Management Functions
Token Manager Server: (single daemon performs this on the Stripe

Group Mgr node, i.e., the entire file system)
The status of the token is held by both the Token Manager Server and the

Token Manager (a kernel extension on the requesting node).
• file is local (served by this node) – a token is granted by the local

Token Manager and then informs the Token Manager Server of the
request.

• file is remote (served by another node) – the Token Manager requests
the token from the Token Manager Server.

GPFS offers:
• byte-range locking – tasks are granted exclusive access to portions of

file, allowing parallel applications to access non-overlapping blocks of
a file with minimal contention

• file locking – entire file is locked by single task

Global Management Functions
Metadata Manager:
• metanode – for each open file, a single node is responsible

for updating that file's metadata. This node changes if
another node gains access to the file.

File Structure

• Allocation
– A standard i-node (index-node) structure is used for file

allocation. The i-node contains attributes of the file
(size, owner, permissions, dates, pointer to data or
indirect block, etc.) plus the pointer (direct or indirect)
to the data blocks.

– The number of i-nodes is statically set at file system
creation time and may not be altered.

File Structure

• Striping
– Each file system consists of a set of VSD disks

constituting a stripe group. The purpose of striping is
to improve I/O performance by allowing records to be
subdivided and simultaneously written to multiple
disks. Since this happens without user explicit
involvement, it is called implicit parallelism.

– RAID strip width should (but might not!) match the
block size of the file system. These are two different
parameters.

File Structure

• Blocks can be striped in three ways:
– round robin – randomly select first disk, then continue

writing blocks to successive disks
– random – randomly select disk for each block
– balanced random – used when disks are not same size,

randomly distributing blocks to disks in a manner
proportional to their size; also described as round robin,
but does not select a disk in the stripe group again until
all disks have been used

File Structure

• Metadata
– Used to locate and organize user data contained

in GPFS’s striped blocks. I-nodes contain
direct pointers to user data or indirect pointer to
indirect blocks. Indirect blocks may point to
other indirect blocks or to user data blocks. In
GPFS 1.4, a maximum of two levels of
indirection is allowed.

File Structure

• File Size (in GPFS 1.5)
– 4 petabytes per file system
– 263-1 bytes (~8 exabytes)
– 256 million files per file system (limit in GPFS

1.4 and GPFS for Linux 1.1)

Memory Utilization
(GPFS Cache)

• The page pool is the GPFS cache of dedicated and
pinned memory. (Pinned memory is memory that can
not be swapped, used to increase performance.)

• The page pool allows for client-side caching, which
offers a performance gain by not having to transfer
data to/from disk and across the switch.

• The size of the page pool is an upper limit of the
actual size of the page pool on each node. GPFS
dynamically adjusts the amount necessary for the page
pool to the max setting. The range is 4MB – 512MB
in GPFS 1.4

CSS
device
driver

CSS
device
driver

Application Node
Application

GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

DATA FLOW
MODEL

user space

kernel space kernel ext. layer

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

1. Application on a node
makes write call with
pointer to buffer in user
space.

user space

kernel space kernel ext. layer

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)
2. mmfsd daemon on

application node checks
for lock:
a. if already holds write

token, skips interaction
with Token Manager
Server (next two steps)

b. if local file for node,
write token is acquired
through Token
Manager, else Token
Manager Server is
contacted. The Token
Manager Server reports
a list of files holding
the token so that the
requesting node may
contact them directly
for negotiation.

3. Token Manager Server
coordinates if there is a
problem with the
required-byte-range
requested

4. mmfsd receives Token
Manager Server response
of token and byte-range

user space

kernel space kernel ext. layer

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

5. mmfsd gets metadata from
the file’s metanode and
updates these metadata
structures.

6. GPFS acquires disk space
to write the data from the
allocation segment, a
cluster of available disk
blocks. Each allocation
segment contains blocks
from every disk, in a
round-robin order. (Two
other algorithms are used
when the file system
grows too large.)

I/O Server Node

(or VSD server)

user space

kernel space kernel ext. layer

VSD layer VSD layer

IP layer IP layer

LVM LVM

disk
driver

disk
driver

Switch

disks

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

7. mmfsd acquires a
buffer from the page
pool, writing out the
oldest dirty buffer if
none available

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

page pool

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

I/O Server Node

(or VSD server)

8. Data is moved from
application data buffer
to page pool buffer
(currently 100MB) in
kernel space

9. mmfsd schedules
worker thread to
continue the write of
the data. At this point,
the application has
completed the write
system call.

user space

kernel space kernel ext. layer

VSD layer VSD layer

IP layer IP layer

LVM LVM

disk
driver

disk
driver

Switch

disks

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

10. The GPFS thread
makes a call to VSD
requesting the data be
written to disk in GPFS
blocksize chunks.

11. The GPFS block is
broken into smaller IP
messages (each less
than 64KB).

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

spool

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

12. 256-byte mbufs
(message buffers that
are kernel data
structures used for
processing IP packets)
are used to contain
VSD and IP headers.

13. CSS (Communication
SubSystem) allocates
send pool (spool – a
staging area for
information to be sent
over the switch) buffer
equal to the data of
each packet is
allocated. Additional
mbufs are allocated for
tracking purposes.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM CSS
device
driver

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

spool

page pool

I/O Server Node

(or VSD server)

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

14. VSD copies data from
the page pool to the
send pool. (This is a
second copy.)

user space

kernel space kernel ext. layer

VSD layer VSD layer

IP layer IP layer

LVM LVM

disk
driver

disk
driver

Switch

disks

Data Flow (write)

CSS
device
driver

CSS
device
driver

spool

Switch

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

I/O Server Node

(or VSD server)

15. VSD client sends the IP
packets (data) to the
VSD server.

user space

kernel space kernel ext. layer

page pool

VSD layer VSD layer

IP layer IP layer

LVM LVM

disk
driver

disk
driver

disks

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

16. Once the data is
transferred onto the
switch, the send pool
and mbufs are freed.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

rpool

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

17. CSS allocates a receive
buffer for each VSD
packet in the request.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

rpool

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

18. Upon arriving at the
VSD server CSS
receive pool, the data is
forwarded to the VSD
layer.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

rpool

CSS
device
driver

CSS
device
driver

buddy buffer

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

19. Once all packets in the
request have been
received by the VSD
server, a buddy buffer
is allocated to
reassemble the data. If
not enough space, the
request is queued and
the data remains in the
CSS receive pool.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

buddy buffer

LVMCSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

20. VSD server releases
mbuf/rpool space and
calls LVM (Logical
Volume Manager) to
schedule disk write
through the device
driver.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

buddy buffer

LVM

disk
driver

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

disks

IP layer

I/O Server Node

(or VSD server)

21. The device driver
performs the write
using 256KB blocks
with DMA.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

22. VSD releases buddy
buffer upon completion
by LVM driver.

23. VSD acquires mbuf
header to send
completion response to
VSD client.

24. VSD client releases the
request block.

user space

kernel space kernel ext. layer

page pool

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write)

CSS
device
driver

CSS
device
driver

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

VSD layer

LVM

disk
driver

disks

IP layer

I/O Server Node

(or VSD server)

25. GPFS releases the page
pool.

user space

kernel space kernel ext. layer

VSD layer

IP layer

LVM

disk
driver

Switch

Data Flow (write) – Entire flow

buddy buffer

LVM

disk
driver

disks

spool

rpool

CSS
device
driver

CSS
device
driver

spool

rpool

Switch

buddy buffer

page pool

Application Node
Application

buffer
GPFS daemon (mmfsd)

Configuration Manager
Stripe Group Manager

Token Manager

Metadata Manager

The READ FLOW is similar,
but in reverse. One
particular issue that is
different, however, is
checking whether the
required data is already
in cache. Also, the
token management is
slightly different,
though still preserving
the consistency of the
data. Again, it is the
Token Manager Server
that determines and
resolves conflicts for a
read token.

I/O Server Node

(or VSD server)

user space

kernel space kernel ext. layer

VSD layer VSD layer

IP layer IP layer

LVM

disk
driver

Additional Information

– Bill Loewe <wel@llnl.gov>

	GPFS Overview
	Topics
	GPFS Highlights
	GPFS Model
	Hardware(as configured on white)
	Simple Configuration
	More detailed Configuration
	General GPFS Structure
	The mmfsd daemon performs all of the I/O and buffer management, including:
	GPFS Structure
	Global Management Functions
	Global Management Functions
	Global Management Functions
	Global Management Functions
	File Structure
	File Structure
	File Structure
	File Structure
	File Structure
	Memory Utilization(GPFS Cache)
	DATA FLOWMODEL
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write)
	Data Flow (write) – Entire flow
	Additional Information

